Papers
See AI2's Award Winning Papers
Learn more about AI2's Lasting Impact Award
Viewing 1-10 of 950 papers
Self-Refine: Iterative Refinement with Self-Feedback
Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, K. Hermann, S. Welleck, A. Yazdanbakhsh, Peter ClarkNeurips • 2023 Like humans, large language models (LLMs) do not always generate the best output on their first try. Motivated by how humans refine their written text, we introduce Self-Refine, an approach for improving initial outputs from LLMs through iterative feedback…A Logic for Expressing Log-Precision Transformers
William Merrill, Ashish SabharwalNeurIPS • 2023 One way to interpret the reasoning power of transformer-based language models is to describe the types of logical rules they can resolve over some input text. Recently, Chiang et al. (2023) showed that finite-precision transformers can be equivalently…Faith and Fate: Limits of Transformers on Compositionality
Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, S. Welleck, Xiang Ren, Allyson Ettinger, Zaïd Harchaoui, Yejin ChoiNeurips • 2023 Transformer large language models (LLMs) have sparked admiration for their exceptional performance on tasks that demand intricate multi-step reasoning. Yet, these models simultaneously show failures on surprisingly trivial problems. This begs the question…Fine-Grained Human Feedback Gives Better Rewards for Language Model Training
Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A. Smith, Mari Ostendorf, Hanna HajishirziNeurIPS • 2023 Language models (LMs) often exhibit undesirable text generation behaviors, including generating false, toxic, or irrelevant outputs. Reinforcement learning from human feedback (RLHF) - where human preference judgments on LM outputs are transformed into a…How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources
Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, Hanna HajishirziNeurIPS • 2023 In this work we explore recent advances in instruction-tuning language models on a range of open instruction-following datasets. Despite recent claims that open models can be on par with state-of-the-art proprietary models, these claims are often accompanied…RealTime QA: What's the Answer Right Now?
Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Velocity Yu, Dragomir R. Radev, Noah A. Smith, Yejin Choi, Kentaro InuiNeurIPS • 2023 We introduce R EAL T IME QA, a dynamic question answering (QA) platform that announces questions and evaluates systems on a regular basis (weekly in this version). R E AL T IME QA inquires about the current world, and QA systems need to answer questions about…SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks
Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithviraj Ammanabrolu, Faeze Brahman, Shiyu Huang, Chandra Bhagavatula, Yejin Choi, Xiang RenNeurips • 2023 We introduce SwiftSage, a novel agent framework inspired by the dual-process theory of human cognition, designed to excel in action planning for complex interactive reasoning tasks. SwiftSage integrates the strengths of behavior cloning and prompting large…Demystifying Prompts in Language Models via Perplexity Estimation
Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith, Luke ZettlemoyerEMNLP Findings • 2023 Language models can be prompted to perform a wide variety of zero- and few-shot learning problems. However, performance varies significantly with the choice of prompt, and we do not yet understand why this happens or how to pick the best prompts. In this work…Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models
Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David R. Mortensen, Noah A. Smith, Yulia TsvetkovEMNLP • 2023 Language models have graduated from being research prototypes to commercialized products offered as web APIs, and recent works have highlighted the multilingual capabilities of these products. The API vendors charge their users based on usage, more…Editing Common Sense in Transformers
Anshita Gupta*, Debanjan Mondal*, Akshay Krishna Sheshadri*, Wenlong Zhao, Xiang Lorraine Li*, Sarah Wiegreffe*, Niket Tandon*EMNLP • 2023 Editing model parameters directly in Transformers makes updating open-source transformer-based models possible without re-training. However, these editing methods have only been evaluated on statements about encyclopedic knowledge with a single correct answer…